miércoles, 26 de mayo de 2010

Fundamentos de TCP/IP

Mapa conceptual de la clase II

Algoritmo de CSMA/CD
Servidor
Es una computadora que forma parte de una red, que provee servicios a otras computadoras denominadas clientes.
Lista de servidores
  • Servidor de archivo
  • Servidor de impresiones
  • Servidor de correo
  • Servidor de fax
  • Servidor de la telefonia
  • Servidor proxy
  • Servidor de acceso remoto
  • Servidor de uso
  • Servidor web
  • Servidor de base de datos
  • Servidor de reserva
  • Servidor de impresion
Otras definciones de servidor

En informática, un servidor es un tipo de software que realiza ciertas tareas en nombre de los usuarios. El término servidor ahora también se utiliza para referirse al ordenador físico en el cual funciona ese software, una máquina cuyo propósito es proveer datos de modo que otras máquinas puedan utilizar esos datos.

Este uso dual puede llevar a confusión. Por ejemplo, en el caso de un servidor web, este término podría referirse a la máquina que almacena y maneja los sitios web, y en este sentido es utilizada por las compañías que ofrecen hosting o hospedaje. Alternativamente, el servidor web podría referirse al software, como el servidor de http de Apache, que funciona en la máquina y maneja la entrega de los componentes de los páginas web como respuesta a peticiones de los navegadores de los clientes.



Ejemplo de servidor

Caracteristicas de los equipos que componen la red de la Uladech

En el aula virtual

26 PC tarjeta madre pcchips, tarjeta de red D-link integrada.

En el laboratorio 1

20 PC marca pcchips, intel , D-link integrada, Ethernet.

En el laboratorio 2

16 PC, marca pcchips, tarjeta de red D-link integrada.

En la sala de control

1 router 660 Zyxel

7 switch D-link 802.11g

2 firewall distribución Pfsens versión 1.2

Topologia en estrella

Diseño de los switch en cascada

Sistemas operativos Ubuntu versión 9.04 y 10.04

1 UPS para los firewall

Impresora laser en red, modelo HP laser 1020, 1006.

ifconfig

ifconfig es un programa disponible en varias versiones del sistema operativo UNIX, que permite configurar o desplegar numerosos parámetros de las interfaces de redes, como la dirección IP (dinámica o estática), o la máscara de red. Si se llama sin argumentos suele mostrar la configuración vigente de las interfaces de red activas, con detalles como la dirección MAC o el tráfico que ha circulado por las mismas hasta el momento.

El programa ifconfig tiene muchos más parámetros que los descritos hasta ahora. Generalmente se ejecuta en la forma: ifconfig interfaz [dirección [parámetros] ]

interfaz es el nombre de la interfaz y dirección es la dirección IP que se asigna a dicha interfaz. La dirección puede estar en forma de cuaterna o usando un nombre que ifconfig buscará en /etc/hosts.

Si ifconfig es ejecutado añadiendo únicamente el nombre de la interfaz, presentará la información de la configuración de dicha interfaz. Si se ejecuta sin parámetros, presenta todas las interfaces configuradas hasta el momento; usando la opción –a fuerza a ifconfig a incluir la información de las interfaces inactivas. A modo de ejemplo, la consulta de la configuración de la interfaz Ethernet eth0 sería: # ifconfig eth0

eth0      Link encap 10Mbps Ethernet  HWaddr 00:00:C0:90:B3:42
inet addr 172.16.1.2 Bcast 172.16.1.255 Mask 255.255.255.0
UP BROADCAST RUNNING MTU 1500 Metric 0
RX packets 3136 errors 217 dropped 7 overrun 26
TX packets 1752 errors 25 dropped 0 overrun 0

A continuación tenemos una lista de los parámetros reconocidos por ifconfig. Las opciones que simplemente activan alguna característica pueden usarse para desactivarla precediéndolas de un guión (–).

up

Marca la interfaz como disponible para que sea usada por la capa IP. Esta opción va implícita cuando lo que se da en la línea de órdenes es una dirección. También permite reactivar una interfaz que se ha desactivado temporalmente mediante la opción down.

Esta opción corresponde a los indicadores UP y RUNNING.

down

Marca la interfaz como inaccesible a la capa IP. Esto inhabilita cualquier tráfico IP a través de la interfaz. Es importante darse cuenta que esto también borra los registros de la tabla de encaminamiento correspondientes a esa interfaz de forma automática.

netmask máscara

Esto asigna una máscara de subred a una interfaz. Se puede dar como un valor de 32 bits en hexadecimal precedido del prefijo 0x, o en notación de cuaterna usando números decimales separados por puntos. Aunque la notación en forma de cuaterna es más común, la representación hexadecimal es muchas veces más fácil de usar. Las máscaras de red son esencialmente binarias, y es más fácil hacer una conversión binario-a-hexadecimal que una binario-a-decimal.

pointopoint dirección

Esta opción se usa para enlaces IP punto-a-punto en los que intervienen únicamente dos máquinas. Esta opción es necesaria para, por ejemplo, configurar las interfaces SLIP o PLIP. Si se ha definido una dirección punto a punto,ifconfig muestra el indicador POINTOPOINT.

broadcast dirección

La dirección de difusión se obtiene, generalmente, usando la parte de red de la dirección y activando todos los bits de la parte correspondiente a la máquina. Algunas implementaciones de los protocolos IP, esta opción proporciona un método para adaptarse a esos entornos más raros. ifconfig confirma el establecimiento de una dirección de difusión incluyendo el indicador BROADCAST.

irq

Esta opción permite establecer la línea de IRQ usado por ciertos dispositivos. Esto es especialmente útil para PLIP, pero también puede ser de utilidad para algunas tarjetas Ethernet.

metric número

Esta opción puede ser usada para asignar un valor de métrica a la tabla de encaminamiento creada para la interfaz. Esta métrica es usada por el Protocolo de Información de Encaminamiento (RIP) para construir las tablas de encaminamiento para la red.[1] El valor usado por omisión por ifconfig es cero. Si no esta ejecutando un demonio RIP, no necesita usar esta opción para nada; si por el contrario lo usa, sólo tendrá que modificar este valor en contadas ocasiones.

mtu bytes

Esto fija la unidad máxima de transferencia, o lo que es lo mismo, el máximo número de octetos que la interfaz es capaz de manejar en una única transacción. Para Ethernets, la MTU toma el valor 1500 por omisión (que es el tamaño máximo permitido para un paquete Ethernet); para interfaces tipo SLIP, el valor por defecto es 296. No hay tamaño límite para el MTU en enlaces SLIP, pero este valor es una buena garantía.

arp

Esta opción es específica de redes de difusión como las Ethernets o las de radio-paquetes. Permite el uso de ARP, el Protocolo de Resolución de Direcciones, para detectar la dirección física de las máquinas conectadas a la red. Para redes de difusión, esta opción es habilitada por omisión. Si ARP está desactivado,ifconfig muestra el indicador NOARP.

– arp

Inhabilita el uso de ARP para esta interfaz.

promisc

Pone la interfaz en modo promiscuo. En una red de difusión, esto hace que la interfaz reciba todos los paquetes, independientemente de si eran para ella o no. Esto permite el análisis del tráfico de red utilizando utilidades como filtros de paquetes, también llamado fisgoneo de Ethernet. Se trata de una buena técnica para localizar problemas de red que de otra forma resultan difíciles de detectar. Herramientas como tcpdump se basan en esto.

Por otro lado, esta opción permite a los atacantes hacer cosas feas, como filtrar el tráfico de su red en busca de contraseñas. Usted puede protegerse contra este tipo de ataques simplemente prohibiendo que nadie conecte un ordenador en la red. También puede usar protocolos de autentificación segura, como Kerberos o ssh (secure shell). [2] Esta opción corresponde al indicadorPROMISC.

– promisc

Esta opción apaga el modo promiscuo.

allmulti

Las direcciones de envío múltiple (multicast) son como las direcciones de difusión de Ethernet, excepto que en lugar de incluir automáticamente a todo el mundo, los únicos que reciben paquetes enviados a una dirección de envío múltiple son aquellos programados para escucharla. Esto es útil para aplicaciones como videoconferencia basada en Ethernet o audio para red, en los que sólo los interesados pueden escuchar. Las direcciones de envío múltiple están soportadas por casi todas las controladoras Ethernet (pero no todas). Cuando esta opción está activa, la interfaz recibe y envía paquetes de envío múltiple para su proceso. Esta opción corresponde al indicador ALLMUTI.

- allmulti

Esta opción desahabilita el modo allmulti

Ejemplos de asignación de dirección IP para una máquina con tres interfaces de red:

# ifconfig eth0 192.168.20.240 netmask 255.255.255.0
# ifconfig eth1 10.100.0.10 netmask 255.255.0.0
# ifconfig eth2 200.69.104.122 netmask 255.255.255.248



miércoles, 3 de febrero de 2010

Tecnologia de Redes

Una red de computadoras, también llamada red de ordenadores o red informática, es un conjunto de equipos (computadoras y/o dispositivos) conectados por medio de cables, señales, ondas o cualquier otro método de transporte de datos, que comparten información (archivos), recursos (CD-ROM, impresoras, etc.), servicios (acceso a internet, e-mail, chat, juegos), etc.
Una red de comunicaciones es un conjunto de medios técnicos que permiten la comunicación a distancia entre equipos autónomos (no jerárquica -master/slave-). Normalmente se trata de transmitir datos, audio y vídeo por ondas electromagnéticas a través de diversos medios (aire, vacío, cable de cobre, fibra óptica, etc.).
Para simplificar la comunicación entre programas (aplicaciones) de distintos equipos, se definió el Modelo OSI por la ISO, el cual especifica 7 distintas capas de abstracción. Con ello, cada capa desarrolla una función específica con un alcance definido.

Clasificacion de Redes
Por alcance:
  • Red de area local (LAN)
  • Red de area metropolitana (MAN)
  • Red de area amplia (WAN)
Por topologia de red:
  • Red en bus
  • Red en estrella
  • Red en anillo
  • Red en malla
  • red en arbol
  • red mixta
Por el tipo de transmision:
  • simplex: trasmite en una sola direccion
  • half-duplex: solo un equipo trasmite a la vez.
  • full-duplex : varios equipos transmiten a la vez.


Tarjetas de red
Para lograr el enlace entre las computadoras y los medios de transmisión (cables de red o medios físicos para redes alámbricas e infrarojos ó radiofrecuencias para redes inalámbricas), es necesaria la intervención de una tarjeta de red o NIC (Network Card Interface) con la cual se puedan enviar y recibir paquetes de datos desde y hacia otras computadoras, empleando un protocolo para su comunicación y convirtiendo esos datos a un formato que pueda ser transmitido por el medio (bits 0's/1's). Cabe señalar que a cada tarjeta de red le es asignado un identificador único por su fabricante, conocido como dirección MAC (Media Access Control), que consta de 48 bits (6 bytes). Dicho identificador permite direccionar el tráfico de datos de la red del emisor al receptor adecuados.
El trabajo del adaptador de red es el de convertir las señales eléctricas que viajan por el cable (ej: red Ethernet) o las ondas de radio (ej: red Wifi) en una señal que pueda interpretar el ordenador.
Tipos de Servidores
Servidor de archivos, servidor de impresiones, servidor de correo, servidor de fax, servidor de la telefonia, servidor de proxy, servidor de acceso remoto, servidor web, servidor DNS.

cable UTP.

conector RJ-45

Mapa conceptual de Diseño y Planeamiento de Redes

Cuadro sinoptico de el diseño e implementacion de una intranet para la empresa azul profundo


Redes Inalambricas
El término red inalámbrica (Wireless network) y inglés es un término que se utiliza para designar la conexión de nodos sin necesidad de una conexión física (cables), ésta se da por medio de ondas electromagneticas. La transmisión y la recepción se realizan a través de puertos .

Una de sus principales ventajas es notable en los costos, ya que se elimina todo el cable ethernet y conexiones físicas entre nodos, pero también tiene una desventaja considerable ya que para este tipo de red se debe de tener una seguridad mucho mas exigente y robusta para evitar a los intrusos.

En la actualidad las redes inalámbricas son una de las tecnologías más prometedoras.
Según su cobertura, se pueden clasificar en diferentes tipos:

Wireless Personal Area Network

En este tipo de red de cobertura personal, existen tecnologías basadas en HomeRF (estándar para conectar todos los teléfonos móviles de la casa y los ordenadores mediante un aparato central); Bluetooth (protocolo que sigue la especificación IEEE 802.15.1); ZigBee (basado en la especificación IEEE 802.15.4 y utilizado en aplicaciones como la domótica, que requieren comunicaciones seguras con tasas bajas de transmisión de datos y maximización de la vida útil de sus baterías, bajo consumo); RFID (sistema remoto de almacenamiento y recuperación de datos con el propósito de transmitir la identidad de un objeto (similar a un número de serie único) mediante ondas de radio.

Wireless Local Area Network

En las redes de área local podemos encontrar tecnologías inalámbricas basadas en HiperLAN (del inglés, High Performance Radio LAN), un estándar del grupo ETSI, o tecnologías basadas en Wi-Fi, que siguen el estándar IEEE 802.11 con diferentes variantes.

Wireless Metropolitan Area Network

Para redes de área metropolitana se encuentran tecnologías basadas en WiMAX (Worldwide Interoperability for Microwave Access, es decir, Interoperabilidad Mundial para Acceso con Microondas), un estándar de comunicación inalámbrica basado en la norma IEEE 802.16. WiMAX es un protocolo parecido a Wi-Fi, pero con más cobertura y ancho de banda. También podemos encontrar otros sistemas de comunicación como LMDS (Local Multipoint Distribution Service).

Wireless Wide Area Network

En estas redes encontramos tecnologías como UMTS (Universal Mobile Telecommunications System), utilizada con los teléfonos móviles de tercera generación (3G) y sucesora de la tecnología GSM (para móviles 2G), o también la tecnología digital para móviles GPRS (General Packet Radio Service).



Aplicaciones de las redes inalambricas
  • Las bandas más importantes con aplicaciones inalámbricas, del rango de frecuencias que abarcan las ondas de radio, son la VLF (comunicaciones en navegación y submarinos), LF (radio AM de onda larga), MF (radio AM de onda media), HF (radio AM de onda corta), VHF (radio FM y TV), UHF (TV).
  • Mediante las microondas terrestres, existen diferentes aplicaciones basadas en protocolos como Bluetooth o ZigBee para interconectar ordenadores portátiles, PDAs, teléfonos u otros aparatos. También se utilizan las microondas para comunicaciones con radares (detección de velocidad o otras características de objetos remotos) y para la televisión digital terrestre.
  • Las microondas por satélite se usan para la difusión de televisión por satélite, transmisión telefónica a larga distancia y en redes privadas, por ejemplo.
  • Los infrarrojos tienen aplicaciones como la comunicación a corta distancia de los ordenadores con sus periféricos. También se utilizan para mandos a distancia, ya que así no interfieren con otras señales electromagnéticas, por ejemplo la señal de televisión. Uno de los estándares más usados en estas comunicaciones es el IrDA (Infrared Data Association). Otros usos que tienen los infrarrojos son técnicas como la termografía, la cual permite determinar la temperatura de objetos a distancia.



router inalambrico



tarjeta de red inalambrica
IEEE 802.11
El estándar IEEE 802.11 define el uso de los dos niveles inferiores de la arquitectura OSI (capas física y de enlace de datos), especificando sus normas de funcionamiento en una WLAN. Los protocolos de la rama 802.x definen la tecnología de redes de área local y redes de área metropolitana.
Wifi N ó 802.11n: En la actualidad la mayoría de productos son de la especificación b y/o g , sin embargo ya se ha ratificado el estándar 802.11n que sube el límite teórico hasta los 600 Mbps. Actualmente ya existen varios productos que cumplen el estándar N con un máximo de 300 Mbps (80-100 estables).
El estándar 802.11n hace uso simultáneo de ambas bandas, 2,4 Ghz y 5,4 Ghz. Las redes que trabajan bajo los estándares 802.11b y 802.11g, tras la reciente ratificación del estándar, se empiezan a fabricar de forma masiva y es objeto de promociones de los operadores ADSL, de forma que la masificación de la citada tecnología parece estar en camino. Todas las versiones de 802.11xx, aportan la ventaja de ser compatibles entre sí, de forma que el usuario no necesitará nada más que su adaptador wifi integrado, para poder conectarse a la red.
Sin duda esta es la principal ventaja que diferencia wifi de otras tecnologías propietarias, como LTE, UMTS y Wimax, las tres tecnologías mencionadas, únicamente están accesibles a los usuarios mediante la suscripción a los servicios de un operador que autorizado para uso de espectro radioeléctrico, mediante concesión de ámbito nacional.
La mayor parte de los fabricantes ya incorpora a sus líneas de producción equipos wifi 802.11n, por este motivo la oferta ADSL, ya suele venir acompañada de wifi 802.11n, como novedad en el mercado de usuario doméstico.
Punto de acceso
Un punto de acceso inalámbrico (WAP o AP por sus siglas en inglés: Wireless Access Point) en redes de computadoras es un dispositivo que interconecta dispositivos de comunicación inalámbrica para formar una red inalámbrica. Normalmente un WAP también puede conectarse a una red cableada, y puede transmitir datos entre los dispositivos conectados a la red cable y los dispositivos inalámbricos. Muchos WAPs pueden conectarse entre sí para formar una red aún mayor, permitiendo realizar "roaming". Por otro lado, una red donde los dispositivos cliente se administran a sí mismos -sin la necesidad de un punto de acceso- se convierten en una red ad-hoc. Los puntos de acceso inalámbricos tienen direcciones IP asignadas, para poder ser configurados.
Son los encargados de crear la red, están siempre a la espera de nuevos clientes a los que dar servicios. El punto de acceso recibe la información, la almacena y la transmite entre la WLAN (Wireless LAN) y la LAN cableada.
Un único punto de acceso puede soportar un pequeño grupo de usuarios y puede funcionar en un rango de al menos treinta metros y hasta varios cientos. Este o su antena son normalmente colocados en alto pero podría colocarse en cualquier lugar en que se obtenga la cobertura de radio deseada.
El usuario final accede a la red WLAN a través de adaptadores. Estos proporcionan una interfaz entre el sistema de operación de red del cliente (NOS: Network Operating System) y las ondas, mediante una antena inalambrica.



punto de acceso
Banda ancha
Se conoce como banda ancha en telecomunicaciones a la transmisión de datos en la cual se envían simultáneamente varias piezas de información, con el objeto de incrementar la velocidad de transmisión efectiva. En ingeniería de redes este término se utiliza también para los métodos en donde dos o más señales comparten un medio de transmisión.
Algunas de las variantes de los servicios de línea de abonado digital (del inglés Digital Subscriber Line, DSL) son de banda ancha en el sentido de que la información se envía sobre un canal y la voz por otro canal,como el canal ATC, pero compartiendo el mismo par de cables. Los modems analógicos que operan con velocidades mayores a 600 bps también son técnicamente banda ancha, pues obtienen velocidades de transmisión efectiva mayores usando muchos canales en donde la velocidad de cada canal se limita a 600 baudios. Por ejemplo, un modem de 2400 bps usa cuatro canales de 600 baudios. Este método de transmisión contrasta con la transmisión en banda base, en donde un tipo de señal usa todo el ancho de banda del medio de transmisión, como por ejemplo Ethernet 100BASE-T.
Es una tecnología de modems que permite el trafico de datos se realice a una velocidad extraordinaria a través de una línea telefónica convencional. Además se puede mantener una conversación por teléfono mientras se está navegando por Internet.